語系:
繁體中文
English
簡体中文
說明(常見問題)
圖書館個人資料蒐集告知聲明
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Elements of causal inference : found...
~
Janzing, Dominik
Elements of causal inference : foundations and learning algorithms
紀錄類型:
書目-語言資料,印刷品 : 單行本
副題名:
foundations and learning algorithms
作者:
PetersJonas, 1984-
其他作者:
JanzingDominik,
其他作者:
SchölkopfBernhard,
出版地:
Cambridge, Mass.
出版者:
MIT Press;
出版年:
c2017
面頁冊數:
xiv, 265 p.ill. : 24 cm.;
集叢名:
Adaptive computation and machine learning
標題:
Causation -
標題:
Computer algorithms -
標題:
Inference -
標題:
Logic, Symbolic and mathematical -
標題:
Machine learning -
附註:
Includes bibliographical references and index
ISBN:
978-0-262-03731-0
內容註:
Machine generated contents note: 1.Statistical and Causal Models 1.1.Probability Theory and Statistics 1.2.Learning Theory 1.3.Causal Modeling and Learning 1.4.Two Examples 2.Assumptions for Causal Inference 2.1.The Principle of Independent Mechanisms 2.2.Historical Notes 2.3.Physical Structure Underlying Causal Models 3.Cause-Effect Models 3.1.Structural Causal Models 3.2.Interventions 3.3.Counterfactuals 3.4.Canonical Representation of Structural Causal Models 3.5.Problems 4.Learning Cause-Effect Models 4.1.Structure Identifiability 4.2.Methods for Structure Identification 4.3.Problems 5.Connections to Machine Learning, I 5.1.Semi-Supervised Learning 5.2.Covariate Shift 5.3.Problems 6.Multivariate Causal Models 6.1.Graph Terminology 6.2.Structural Causal Models 6.3.Interventions 6.4.Counterfactuals 6.5.Markov Property, Faithfulness, and Causal Minimality 6.6.Calculating Intervention Distributions by Covariate Adjustment 6.7.Do-Calculus 6.8.Equivalence and Falsifiability of Causal Models 6.9.Potential Outcomes 6.10.Generalized Structural Causal Models Relating Single Objects 6.11.Algorithmic Independence of Conditionals 6.12.Problems 7.Learning Multivariate Causal Models 7.1.Structure Identifiability 7.2.Methods for Structure Identification 7.3.Problems 8.Connections to Machine Learning, II 8.1.Half-Sibling Regression 8.2.Causal Inference and Episodic Reinforcement Learning 8.3.Domain Adaptation 8.4.Problems 9.Hidden Variables 9.1.Interventional Sufficiency 9.2.Simpson's Paradox 9.3.Instrumental Variables 9.4.Conditional Independences and Graphical Representations 9.5.Constraints beyond Conditional Independence 9.6.Problems 10.Time Series 10.1.Preliminaries and Terminology 10.2.Structural Causal Models and Interventions 10.3.Learning Causal Time Series Models 10.4.Dynamic Causal Modeling 10.5.Problems Appendices Appendix A Some Probability and Statistics A.1.Basic Definitions A.2.Independence and Conditional Independence Testing A.3.Capacity of Function Classes Appendix B Causal Orderings and Adjacency Matrices Appendix C Proofs C.1.Proof of Theorem 4.2 C.2.Proof of Proposition 6.3 C.3.Proof of Remark 6.6 C.4.Proof of Proposition 6.13 C.5.Proof of Proposition 6.14 C.6.Proof of Proposition 6.36 C.7.Proof of Proposition 6.48 C.8.Proof of Proposition 6.49 C.9.Proof of Proposition 7.1 C.10.Proof of Proposition 7.4 C.11.Proof of Proposition 8.1 C.12.Proof of Proposition 8.2 C.13.Proof of Proposition 9.3 C.14.Proof of Theorem 10.3 C.15.Proof of Theorem 10.4
Elements of causal inference : foundations and learning algorithms
Peters, Jonas
Elements of causal inference
: foundations and learning algorithms / Jonas Peters, Dominik Janzing, and Bernhard Schölkopf - Cambridge, Mass. : MIT Press, c2017. - xiv, 265 p. ; ill. ; 24 cm.. - (Adaptive computation and machine learning).
Machine generated contents note: 1.Statistical and Causal Models.
Includes bibliographical references and index.
ISBN 978-0-262-03731-0
CausationComputer algorithmsInferenceLogic, Symbolic and mathematicalMachine learning
Janzing, Dominik
Elements of causal inference : foundations and learning algorithms
LDR
:03272cam0 2200217 450
001
379515
005
20180202132447.0
009
a22083944
010
1
$a
978-0-262-03731-0
$b
hbk.
$d
NT1347
020
$a
us
$b
2017020087
100
$a
20180723d2017 m y0engy50 ba
101
0
$a
eng
102
$a
us
105
$a
a a 001yy
200
1
$a
Elements of causal inference
$e
foundations and learning algorithms
$f
Jonas Peters, Dominik Janzing, and Bernhard Schölkopf
210
$a
Cambridge, Mass.
$c
MIT Press
$d
c2017
215
1
$a
xiv, 265 p.
$c
ill.
$d
24 cm.
225
1
$a
Adaptive computation and machine learning
300
$a
Includes bibliographical references and index
327
1
$a
Machine generated contents note: 1.Statistical and Causal Models
$a
1.1.Probability Theory and Statistics
$a
1.2.Learning Theory
$a
1.3.Causal Modeling and Learning
$a
1.4.Two Examples
$a
2.Assumptions for Causal Inference
$a
2.1.The Principle of Independent Mechanisms
$a
2.2.Historical Notes
$a
2.3.Physical Structure Underlying Causal Models
$a
3.Cause-Effect Models
$a
3.1.Structural Causal Models
$a
3.2.Interventions
$a
3.3.Counterfactuals
$a
3.4.Canonical Representation of Structural Causal Models
$a
3.5.Problems
$a
4.Learning Cause-Effect Models
$a
4.1.Structure Identifiability
$a
4.2.Methods for Structure Identification
$a
4.3.Problems
$a
5.Connections to Machine Learning, I
$a
5.1.Semi-Supervised Learning
$a
5.2.Covariate Shift
$a
5.3.Problems
$a
6.Multivariate Causal Models
$a
6.1.Graph Terminology
$a
6.2.Structural Causal Models
$a
6.3.Interventions
$a
6.4.Counterfactuals
$a
6.5.Markov Property, Faithfulness, and Causal Minimality
$a
6.6.Calculating Intervention Distributions by Covariate Adjustment
$a
6.7.Do-Calculus
$a
6.8.Equivalence and Falsifiability of Causal Models
$a
6.9.Potential Outcomes
$a
6.10.Generalized Structural Causal Models Relating Single Objects
$a
6.11.Algorithmic Independence of Conditionals
$a
6.12.Problems
$a
7.Learning Multivariate Causal Models
$a
7.1.Structure Identifiability
$a
7.2.Methods for Structure Identification
$a
7.3.Problems
$a
8.Connections to Machine Learning, II
$a
8.1.Half-Sibling Regression
$a
8.2.Causal Inference and Episodic Reinforcement Learning
$a
8.3.Domain Adaptation
$a
8.4.Problems
$a
9.Hidden Variables
$a
9.1.Interventional Sufficiency
$a
9.2.Simpson's Paradox
$a
9.3.Instrumental Variables
$a
9.4.Conditional Independences and Graphical Representations
$a
9.5.Constraints beyond Conditional Independence
$a
9.6.Problems
$a
10.Time Series
$a
10.1.Preliminaries and Terminology
$a
10.2.Structural Causal Models and Interventions
$a
10.3.Learning Causal Time Series Models
$a
10.4.Dynamic Causal Modeling
$a
10.5.Problems
$a
Appendices
$a
Appendix A Some Probability and Statistics
$a
A.1.Basic Definitions
$a
A.2.Independence and Conditional Independence Testing
$a
A.3.Capacity of Function Classes
$a
Appendix B Causal Orderings and Adjacency Matrices
$a
Appendix C Proofs
$a
C.1.Proof of Theorem 4.2
$a
C.2.Proof of Proposition 6.3
$a
C.3.Proof of Remark 6.6
$a
C.4.Proof of Proposition 6.13
$a
C.5.Proof of Proposition 6.14
$a
C.6.Proof of Proposition 6.36
$a
C.7.Proof of Proposition 6.48
$a
C.8.Proof of Proposition 6.49
$a
C.9.Proof of Proposition 7.1
$a
C.10.Proof of Proposition 7.4
$a
C.11.Proof of Proposition 8.1
$a
C.12.Proof of Proposition 8.2
$a
C.13.Proof of Proposition 9.3
$a
C.14.Proof of Theorem 10.3
$a
C.15.Proof of Theorem 10.4
606
$a
Causation
$2
lc
$3
367984
606
$a
Computer algorithms
$2
lc
$3
74360
606
$a
Inference
$2
lc
$3
367985
606
$a
Logic, Symbolic and mathematical
$2
lc
$3
74121
606
$a
Machine learning
$2
lc
$3
73096
676
$a
006.3/1
$v
23
680
$a
Q325.5
$b
.P48 2017
700
1
$a
Peters
$b
Jonas
$f
1984-
$3
367981
702
1
$a
Janzing
$b
Dominik
$3
367982
702
1
$a
Schölkopf
$b
Bernhard
$3
367983
筆 0 讀者評論
館藏地:
全部
六樓西文書庫區
出版年:
卷號:
館藏
期刊年代月份卷期操作說明(Help)
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約人數
期刊出刊日期 / 原館藏地 / 其他備註
附件
382210
六樓西文書庫區
圖書流通(BOOK_CIR)
BOOK
006.31/P482
一般使用(Normal)
書架上
0
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
建立或儲存個人書籤
書目轉出
取書館別
處理中
...
變更密碼
登入