語系:
繁體中文
English
簡体中文
說明(常見問題)
圖書館個人資料蒐集告知聲明
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Filter synthesis using Genesys S/Filter
~
Rhea, Randall W.
Filter synthesis using Genesys S/Filter
紀錄類型:
書目-語言資料,印刷品 : 單行本
作者:
RheaRandall W.,
出版地:
Boston
出版者:
Artech House;
出版年:
c2014
面頁冊數:
xiv, 327 p.ill. : 24 cm.;
集叢名:
Artech House microwave library
標題:
Electric filters -
標題:
Electric filters - Design and construction -
標題:
Electric filters - Mathematical models -
附註:
Formerly CIP
ISBN:
9781608078028
內容註:
Machine generated contents note: 1.Transmission Zeros -- 1.1.Determining TZ by Inspection -- 1.2.Filter Degree -- 1.3.Canonical Realization -- 1.4.Influence of TZs on the Response -- References -- 2.All-Pole Lowpass and Highpass -- 2.1.Initial All-Pole Lowpass Parameters -- 2.2.Dual Topologies -- 2.3.Chebyshev Approximation with Even Order -- 2.4.All-Pole Highpass Example -- References -- 3.Lowpass with Finite Zeros -- 3.1.Introduction -- 3.2.Alternative Topologies -- 4.Conventional Bandpass -- 4.1.Bandpass Transform -- 4.2.Classification Symmetry or Antimetry -- 4.3.A 75- to 125-MHz Bandpass -- 4.4.A 96- to 104-MHz Bandpass Filter -- 4.5.Comparative Analysis of the Wide and Narrow Filters -- Reference -- 5.Extraction Sequences -- 5.1.The Extraction Tab -- Reference -- 6.Customized Bandpass Filters -- 6.1.Custom Filter Specification -- 6.2.Partial Extractions of FTZs -- 6.3.Inexact Extractions -- 6.4.Inexact Example -- 7.Norton Transforms -- 7.1.Norton Series Transform -- Contents note continued: 7.2.Removing a Transformer with the Series Norton -- 7.3.Norton Shunt Transform -- 7.4.Equal-Valued Inductor Bandpass -- 7.5.The History Tab -- 7.6.Equate All Ls -- 8.Bandpass with Resonators -- 8.1.Coupled Parallel-Resonator Filters -- 8.1.1.Exact Design of a Parallel Resonator All-Pole Filter -- 8.1.2.Termination Coupling Transforms -- 8.1.3.Find Dual Transform -- 8.1.4.Exact Design with Like Coupling Elements -- 8.1.5.The Equate All Shunt Ls or Shorted Stubs Transform -- 8.1.6.Termination-Coupled Bandpass -- 8.2.Coupled Series-Resonator Filters -- 8.2.1.The Basic Series-Resonator Bandpass -- 8.2.2.Tubular Bandpass -- 8.2.3.Manufacture of the Tubular Bandpass -- 8.2.4.Generalized Series-Resonator Bandpass -- 8.2.5.Tunable Constant-Bandwidth Bandpass -- Reference -- 9.TEM-Mode Resonators -- 9.1.Filter Insertion Loss -- 9.2.Filter Using 50-Ohm Coaxial Resonators -- 9.2.1.Lumped to Distributed Equivalents -- Contents note continued: 9.2.2.The Convert Using Advanced Tline Routine -- 9.3.Generalized Bandpass Using Ceramic Resonators -- 9.3.1.Creating Parallel Resonators -- 9.3.2.Shifting the Internal Impedance Level -- 9.3.3.The Pi to Tee Transform: Increasing Coupling Caps -- 9.3.4.Converting the Parallel L-C to Coaxial Resonators -- 9.3.5.Optimizing the Values -- 9.4.Ceramic Bandpass with Two FTZs -- References -- 10.Piezoelectric Devices -- 10.1.Quartz-Crystal Device Model -- 10.1.1.Physical Form of the Quartz Crystal -- 10.1.2.Insertion Response of a Quartz Crystal -- 10.1.3.Modeling the Quartz Crystal -- 10.1.4.Calculating Model Parameters from the Response -- 10.1.5.The Quartz-Crystal Model and Filter Design -- 10.2.Quartz-Crystal Filter Approximate Design -- 10.3.Nulling the Static Capacitance -- 10.4.Design of a Lower-Sideband Crystal Filter -- 10.5.Upper-Sideband Quartz-Crystal Filter -- 10.6.Filters with TZs Above and Below the Passband -- Contents note continued: 10.7.Wide-Bandwidth Quartz-Crystal Filters -- 10.8.Very Wide-Bandwidth Quartz-Crystal Filters -- 10.9.Ceramic-Piezoelectric Resonators -- Reference -- 11.Symmetry -- 11.1.Physical Symmetry -- 11.1.1.A Lowpass Filter with FTZ Pairings -- 11.1.2.A Bandpass Filter with FTZ Pairings -- 11.2.Response Symmetry -- 11.2.1.All-Pole Symmetric Response Filters -- 11.2.2.Generalized Bandpass with Symmetric Response -- 11.2.3.Symmetry by FTZ Placement -- 11.3.Group-Delay Equalization -- References -- 12.Matching with S/Filter -- 12.1.Matching Concepts -- 12.1.1.Complex Conjugate Match -- 12.1.2.Two-Element Matching Networks -- 12.2.Real Terminations -- 12.2.1.Exploiting Extraction Sequences -- 12.2.2.Exploiting Resonator Filters -- 12.3.Complex Terminations -- 12.3.1.Fano's Limit -- 12.3.2.Example: Power Amplifier Match -- 12.3.3.Example: Broadband Antenna Match -- References -- 13.Distributed Filters -- 13.1.Comparing Distributed and Lumped Filters -- Contents note continued: 13.2.The Genesys Microwave Filter Module -- 13.3.Distributed Synthesis Concepts -- 13.3.1.TLEs -- 13.3.2.Richards Transform -- 13.3.3.Kuroda Identities -- 13.3.4.Ikeno Transforms -- 13.3.5.Kuroda-Minnis Transform -- 13.3.6.Half-Angle Transform -- 13.3.7.Interdigital Transform -- 13.3.8.Combline Transform -- 13.4.Lumped to Distributed Equivalent Transforms -- 13.5.Inverters -- 13.6.The Convert Using Advanced TLine Routine -- 13.7.Box Modes -- 13.8.Introduction to Distributed Filter Examples -- References -- 14.Distributed Lowpass Filters -- 14.1.Exact Methods -- 14.1.1.Lowpass with Redundant UEs -- 14.1.2.Stub TLEs and Contributing Unit Elements -- 14.1.3.Lowpass with Only Contributing UEs (Stepped-Z) -- 14.1.4.Generalized Lowpass Filter -- 14.2.Approximate Methods -- 14.2.1.All-Pole: Equivalent Series TLE and Shorted Stubs -- 14.2.2.Stepped Impedance Lowpass -- 14.2.3.Generalized Lowpass -- 14.3.Size Reduction by Penetration -- 14.4.Radial Stub Lowpass -- Contents note continued: 14.5.Hybrid Lowpass -- 14.6.Distributed Lowpass Summary -- Reference -- 15.Distributed Bandstop Filters -- 15.1.All-Pole with Stubs and Contributing UEs -- 15.1.1.Wide Bandwidth Bandstop -- 15.1.2.Moderate Bandwidth Bandstop -- 15.1.3.Narrow Bandstop with Ikeno Transforms -- 15.2.Generalized Narrowband Bandstop -- 16.Distributed Bandpass Filters -- 16.1.Tutorials of Bandpass by Synthesis -- 16.1.1.Edge-Coupled Using Richards Transform -- 16.1.2.Edge-Coupled Using Inverters -- 16.1.3.Interdigital Using Inverters -- 16.2.Unique Bandpass Designs -- 16.2.1.Combline with Capacitive External Coupling -- 16.2.2.Miniature Bandpass with Contributing UEs -- 16.2.3.Narrow Bandwidth with UEs and an FTZ -- 16.2.4.Penetrating Combline -- 16.2.5.Minnis Class-D Bandpass -- 16.3.Hybrid Bandpass -- 16.3.1.Penetrating Combline with Capacitors -- 16.3.2.Generalized Combline Hybrid -- 16.3.3.Direct-Coupled Bandpass with Capacitors -- References -- Contents note continued: 17.Distributed Highpass Filters -- 17.1.The Hybrid Highpass -- 17.1.1.The All-Pole Hybrid: Distributed Synthesis -- 17.1.2.The All-Pole Hybrid Highpass: Lumped Synthesis -- 17.1.3.The Hybrid Highpass with UEs -- 17.1.4.The Hybrid Highpass with an FTZ -- 17.2.Purely Distributed Highpass -- 17.2.1.Highpass with Three TZs at DC and a UE -- 17.2.2.Highpass with Three TZs at DC and Four UEs -- 17.3.The Highpass Synthesized as a Bandpass -- 17.3.1.Hybrid Highpass from an Eighth-Degree Bandpass -- 17.3.2.Hybrid Highpass from a 10th-Degree Bandpass -- 18.Multiplexers -- 18.1.Contiguous Multiplexers -- 18.1.1.Contiguous Lowpass-Highpass Diplexer -- 18.1.2.Contiguous LP/BP/HP Multiplexer -- 18.2.Noncontiguous Multiplexers -- 18.2.1.Noncontiguous LP/HP Diplexer with FTZ -- 18.2.2.Noncontiguous Distributed Combline Diplexer -- Reference -- 19.Electromagnetic Simulation -- 19.1.Overview -- 19.1.1.The EMPower Program -- 19.1.2.The Momentum Program -- Contents note continued: 19.1.3.The EMPro Program -- 19.2.Box Modes -- 19.3.EM Simulation of Distributed Circuits -- 19.3.1.EM Simulation of Penetrating Stepped-Z Lowpass -- 19.3.2.EM Simulation of a Combline Bandpass -- 19.3.3.EM Simulation of a Direct-Coupled Bandpass -- 19.4.Classic Method of Bandpass Design -- 19.4.1.Classic Method Fundamentals -- 19.4.2.Example: Determining K Values -- 19.4.3.Example: Determining Q Values -- 19.4.4.Filter Example Using the Classic Method -- References -- Appendix A Example Summary -- A.1.Lumped Examples -- A.2.Distributed Examples -- A.3.Hybrid Examples -- A.4.Multiplexer Examples
Filter synthesis using Genesys S/Filter
Rhea, Randall W.
Filter synthesis using Genesys S/Filter
/ Randall W. Rhea - Boston : Artech House, c2014. - xiv, 327 p. ; ill. ; 24 cm.. - (Artech House microwave library).
Machine generated contents note: 1.Transmission Zeros -- 1.1.Determining TZ by Inspection -- 1.2.Filter Degree -- 1.3.Canonical Realization -- 1.4.Influence of TZs on the Response -- References -- 2.All-Pole Lowpass and Highpass -- 2.1.Initial All-Pole Lowpass Parameters -- 2.2.Dual Topologies -- 2.3.Chebyshev Approximation with Even Order -- 2.4.All-Pole Highpass Example -- References -- 3.Lowpass with Finite Zeros -- 3.1.Introduction -- 3.2.Alternative Topologies -- 4.Conventional Bandpass -- 4.1.Bandpass Transform -- 4.2.Classification Symmetry or Antimetry -- 4.3.A 75- to 125-MHz Bandpass -- 4.4.A 96- to 104-MHz Bandpass Filter -- 4.5.Comparative Analysis of the Wide and Narrow Filters -- Reference -- 5.Extraction Sequences -- 5.1.The Extraction Tab -- Reference -- 6.Customized Bandpass Filters -- 6.1.Custom Filter Specification -- 6.2.Partial Extractions of FTZs -- 6.3.Inexact Extractions -- 6.4.Inexact Example -- 7.Norton Transforms -- 7.1.Norton Series Transform --.
Formerly CIPUk.
Includes bibliographical references and index.
ISBN 9781608078028ISBN 1608078027
Electric filtersElectric filtersElectric filters -- Design and construction -- Mathematical models
Filter synthesis using Genesys S/Filter
LDR
:08175cam2 2200253 4500
001
345233
009
ocn880922047
010
1
$a
9781608078028
$b
hbk.
$d
NT4358
010
1
$a
1608078027
$b
hbk.
100
$a
20141218d2014 k y0engy01 b
101
0
$a
eng
102
$a
us
$b
ma
105
$a
a a 001yy
200
1
$a
Filter synthesis using Genesys S/Filter
$f
Randall W. Rhea
210
$a
Boston
$c
Artech House
$d
c2014
215
1
$a
xiv, 327 p.
$c
ill.
$d
24 cm.
225
2
$a
Artech House microwave library
300
$a
Formerly CIP
300
$a
Uk
320
$a
Includes bibliographical references and index
327
1
$a
Machine generated contents note: 1.Transmission Zeros -- 1.1.Determining TZ by Inspection -- 1.2.Filter Degree -- 1.3.Canonical Realization -- 1.4.Influence of TZs on the Response -- References -- 2.All-Pole Lowpass and Highpass -- 2.1.Initial All-Pole Lowpass Parameters -- 2.2.Dual Topologies -- 2.3.Chebyshev Approximation with Even Order -- 2.4.All-Pole Highpass Example -- References -- 3.Lowpass with Finite Zeros -- 3.1.Introduction -- 3.2.Alternative Topologies -- 4.Conventional Bandpass -- 4.1.Bandpass Transform -- 4.2.Classification Symmetry or Antimetry -- 4.3.A 75- to 125-MHz Bandpass -- 4.4.A 96- to 104-MHz Bandpass Filter -- 4.5.Comparative Analysis of the Wide and Narrow Filters -- Reference -- 5.Extraction Sequences -- 5.1.The Extraction Tab -- Reference -- 6.Customized Bandpass Filters -- 6.1.Custom Filter Specification -- 6.2.Partial Extractions of FTZs -- 6.3.Inexact Extractions -- 6.4.Inexact Example -- 7.Norton Transforms -- 7.1.Norton Series Transform --
$a
Contents note continued: 7.2.Removing a Transformer with the Series Norton -- 7.3.Norton Shunt Transform -- 7.4.Equal-Valued Inductor Bandpass -- 7.5.The History Tab -- 7.6.Equate All Ls -- 8.Bandpass with Resonators -- 8.1.Coupled Parallel-Resonator Filters -- 8.1.1.Exact Design of a Parallel Resonator All-Pole Filter -- 8.1.2.Termination Coupling Transforms -- 8.1.3.Find Dual Transform -- 8.1.4.Exact Design with Like Coupling Elements -- 8.1.5.The Equate All Shunt Ls or Shorted Stubs Transform -- 8.1.6.Termination-Coupled Bandpass -- 8.2.Coupled Series-Resonator Filters -- 8.2.1.The Basic Series-Resonator Bandpass -- 8.2.2.Tubular Bandpass -- 8.2.3.Manufacture of the Tubular Bandpass -- 8.2.4.Generalized Series-Resonator Bandpass -- 8.2.5.Tunable Constant-Bandwidth Bandpass -- Reference -- 9.TEM-Mode Resonators -- 9.1.Filter Insertion Loss -- 9.2.Filter Using 50-Ohm Coaxial Resonators -- 9.2.1.Lumped to Distributed Equivalents --
$a
Contents note continued: 9.2.2.The Convert Using Advanced Tline Routine -- 9.3.Generalized Bandpass Using Ceramic Resonators -- 9.3.1.Creating Parallel Resonators -- 9.3.2.Shifting the Internal Impedance Level -- 9.3.3.The Pi to Tee Transform: Increasing Coupling Caps -- 9.3.4.Converting the Parallel L-C to Coaxial Resonators -- 9.3.5.Optimizing the Values -- 9.4.Ceramic Bandpass with Two FTZs -- References -- 10.Piezoelectric Devices -- 10.1.Quartz-Crystal Device Model -- 10.1.1.Physical Form of the Quartz Crystal -- 10.1.2.Insertion Response of a Quartz Crystal -- 10.1.3.Modeling the Quartz Crystal -- 10.1.4.Calculating Model Parameters from the Response -- 10.1.5.The Quartz-Crystal Model and Filter Design -- 10.2.Quartz-Crystal Filter Approximate Design -- 10.3.Nulling the Static Capacitance -- 10.4.Design of a Lower-Sideband Crystal Filter -- 10.5.Upper-Sideband Quartz-Crystal Filter -- 10.6.Filters with TZs Above and Below the Passband --
$a
Contents note continued: 10.7.Wide-Bandwidth Quartz-Crystal Filters -- 10.8.Very Wide-Bandwidth Quartz-Crystal Filters -- 10.9.Ceramic-Piezoelectric Resonators -- Reference -- 11.Symmetry -- 11.1.Physical Symmetry -- 11.1.1.A Lowpass Filter with FTZ Pairings -- 11.1.2.A Bandpass Filter with FTZ Pairings -- 11.2.Response Symmetry -- 11.2.1.All-Pole Symmetric Response Filters -- 11.2.2.Generalized Bandpass with Symmetric Response -- 11.2.3.Symmetry by FTZ Placement -- 11.3.Group-Delay Equalization -- References -- 12.Matching with S/Filter -- 12.1.Matching Concepts -- 12.1.1.Complex Conjugate Match -- 12.1.2.Two-Element Matching Networks -- 12.2.Real Terminations -- 12.2.1.Exploiting Extraction Sequences -- 12.2.2.Exploiting Resonator Filters -- 12.3.Complex Terminations -- 12.3.1.Fano's Limit -- 12.3.2.Example: Power Amplifier Match -- 12.3.3.Example: Broadband Antenna Match -- References -- 13.Distributed Filters -- 13.1.Comparing Distributed and Lumped Filters --
$a
Contents note continued: 13.2.The Genesys Microwave Filter Module -- 13.3.Distributed Synthesis Concepts -- 13.3.1.TLEs -- 13.3.2.Richards Transform -- 13.3.3.Kuroda Identities -- 13.3.4.Ikeno Transforms -- 13.3.5.Kuroda-Minnis Transform -- 13.3.6.Half-Angle Transform -- 13.3.7.Interdigital Transform -- 13.3.8.Combline Transform -- 13.4.Lumped to Distributed Equivalent Transforms -- 13.5.Inverters -- 13.6.The Convert Using Advanced TLine Routine -- 13.7.Box Modes -- 13.8.Introduction to Distributed Filter Examples -- References -- 14.Distributed Lowpass Filters -- 14.1.Exact Methods -- 14.1.1.Lowpass with Redundant UEs -- 14.1.2.Stub TLEs and Contributing Unit Elements -- 14.1.3.Lowpass with Only Contributing UEs (Stepped-Z) -- 14.1.4.Generalized Lowpass Filter -- 14.2.Approximate Methods -- 14.2.1.All-Pole: Equivalent Series TLE and Shorted Stubs -- 14.2.2.Stepped Impedance Lowpass -- 14.2.3.Generalized Lowpass -- 14.3.Size Reduction by Penetration -- 14.4.Radial Stub Lowpass --
$a
Contents note continued: 14.5.Hybrid Lowpass -- 14.6.Distributed Lowpass Summary -- Reference -- 15.Distributed Bandstop Filters -- 15.1.All-Pole with Stubs and Contributing UEs -- 15.1.1.Wide Bandwidth Bandstop -- 15.1.2.Moderate Bandwidth Bandstop -- 15.1.3.Narrow Bandstop with Ikeno Transforms -- 15.2.Generalized Narrowband Bandstop -- 16.Distributed Bandpass Filters -- 16.1.Tutorials of Bandpass by Synthesis -- 16.1.1.Edge-Coupled Using Richards Transform -- 16.1.2.Edge-Coupled Using Inverters -- 16.1.3.Interdigital Using Inverters -- 16.2.Unique Bandpass Designs -- 16.2.1.Combline with Capacitive External Coupling -- 16.2.2.Miniature Bandpass with Contributing UEs -- 16.2.3.Narrow Bandwidth with UEs and an FTZ -- 16.2.4.Penetrating Combline -- 16.2.5.Minnis Class-D Bandpass -- 16.3.Hybrid Bandpass -- 16.3.1.Penetrating Combline with Capacitors -- 16.3.2.Generalized Combline Hybrid -- 16.3.3.Direct-Coupled Bandpass with Capacitors -- References --
$a
Contents note continued: 17.Distributed Highpass Filters -- 17.1.The Hybrid Highpass -- 17.1.1.The All-Pole Hybrid: Distributed Synthesis -- 17.1.2.The All-Pole Hybrid Highpass: Lumped Synthesis -- 17.1.3.The Hybrid Highpass with UEs -- 17.1.4.The Hybrid Highpass with an FTZ -- 17.2.Purely Distributed Highpass -- 17.2.1.Highpass with Three TZs at DC and a UE -- 17.2.2.Highpass with Three TZs at DC and Four UEs -- 17.3.The Highpass Synthesized as a Bandpass -- 17.3.1.Hybrid Highpass from an Eighth-Degree Bandpass -- 17.3.2.Hybrid Highpass from a 10th-Degree Bandpass -- 18.Multiplexers -- 18.1.Contiguous Multiplexers -- 18.1.1.Contiguous Lowpass-Highpass Diplexer -- 18.1.2.Contiguous LP/BP/HP Multiplexer -- 18.2.Noncontiguous Multiplexers -- 18.2.1.Noncontiguous LP/HP Diplexer with FTZ -- 18.2.2.Noncontiguous Distributed Combline Diplexer -- Reference -- 19.Electromagnetic Simulation -- 19.1.Overview -- 19.1.1.The EMPower Program -- 19.1.2.The Momentum Program --
$a
Contents note continued: 19.1.3.The EMPro Program -- 19.2.Box Modes -- 19.3.EM Simulation of Distributed Circuits -- 19.3.1.EM Simulation of Penetrating Stepped-Z Lowpass -- 19.3.2.EM Simulation of a Combline Bandpass -- 19.3.3.EM Simulation of a Direct-Coupled Bandpass -- 19.4.Classic Method of Bandpass Design -- 19.4.1.Classic Method Fundamentals -- 19.4.2.Example: Determining K Values -- 19.4.3.Example: Determining Q Values -- 19.4.4.Filter Example Using the Classic Method -- References -- Appendix A Example Summary -- A.1.Lumped Examples -- A.2.Distributed Examples -- A.3.Hybrid Examples -- A.4.Multiplexer Examples
410
0
$1
2001
$a
Artech House microwave library
606
$a
Electric filters
$2
lc
$3
74522
606
$a
Electric filters
$x
Design and construction
$2
lc
$3
75119
606
$a
Electric filters
$x
Mathematical models
$2
lc
$3
319283
676
$a
621.3815324
$v
23
680
$a
TK7872.F5
$b
R43 2014
700
1
$a
Rhea
$b
Randall W.
$3
319282
801
0
$a
cw
$b
CTU
$c
20141120
$g
AACR2
筆 0 讀者評論
館藏地:
全部
六樓西文書庫區
出版年:
卷號:
館藏
期刊年代月份卷期操作說明(Help)
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約人數
期刊出刊日期 / 原館藏地 / 其他備註
附件
349551
六樓西文書庫區
圖書流通(BOOK_CIR)
BOOK
621.3815324/R469
一般使用(Normal)
書架上
0
1 筆 • 頁數 1 •
1
評論
新增評論
分享你的心得
建立或儲存個人書籤
書目轉出
取書館別
處理中
...
變更密碼
登入